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Esophageal cancer is a well-known cancer with poorer prognosis than other cancers. An opti-
mal and individualized treatment protocol based on accurate diagnosis is urgently needed to im-
prove the treatment of cancer patients. For this purpose, it is important to develop a sophisticated
algorithm that can manage a large amount of data, such as gene expression data from DNA mi-
croarrays, for optimal and individualized diagnosis. Marker gene selection is essential in the anal-
ysis of gene expression data. We have already developed a combination method of the use of the
projective adaptive resonance theory and that of a boosted fuzzy classifier with the SWEEP oper-
ator denoted PART-BFCS. This method is superior to other methods, and has four features,
namely fast calculation, accurate prediction, reliable prediction, and rule extraction. In this study,
we applied this method to analyze microarray data obtained from esophageal cancer patients. A
combination method of PART-BFCS and the U-test was also investigated. It was necessary to use
a specific type of BFCS, namely, BFCS-1,2, because the esophageal cancer data were very com-
plexity. PART-BFCS and PART-BFCS with the U-test models showed higher performances than
two conventional methods, namely, k-nearest neighbor (kNN) and weighted voting (WV). The
genes including CDK6 could be found by our methods and excellent IF-THEN rules could be ex-
tracted. The genes selected in this study have a high potential as new diagnosis markers for esoph-
ageal cancer. These results indicate that the new methods can be used in marker gene selection for
the diagnosis of cancer patients.

[Key words: cancer classification, boosting, projective adaptive resonance theory, esophageal cancer, intramural 
metastases]

Cancer is a major cause of human deaths in the many
countries. Esophageal cancer is the eighth most common
cancer and the sixth most common cause of cancer-related
mortality in the world (1). This cancer is a well-known can-
cer with poorer prognosis than other cancers. Lymph node
metastasis is one of the reasons for its poor prognosis in
potentially resectable solid epithelial tumors. Furthermore,
intramural metastasis (skip metastasis) has poorer prognosis
than lymph node metastasis (2). From such situations, the
prognosis of cancer patients with the same clinical diagno-
sis can differ, frequently. Therefore, it is important that the
prognosis of cancer patients is made accurately and that an
adequate treatment is proposed. However, the diagnosis of
cancer patients is determined by a complex causality involv-
ing multiple factors because the mechanisms of cancer de-

velopment (or malignancy) are extremely complex. Gene
expression data from DNA microarrays are individualized
and useful in the diagnosis and prognosis of diseases (3). To
conduct this analysis, it is necessary to select genes signifi-
cantly expressing mRNA and strongly related to the diagno-
sis or prognosis of disease, because the performance of clas-
sification analysis can decline owing to such large quantities
of data.

Feature selection has been performed to screen candidate
genes for modeling. There are two types of approach: the
wrapper and filter approaches. In the former, features (genes)
are selected as a part of mining algorithms, such as support
vector machines (SVMs) (4), a fuzzy neural networks
(FNNs) combined with the SWEEP operator method (FNN-
SWEEP) (3), and a boosted fuzzy classifier with the SWEEP
operator method (BFCS) (5, 6). On the other hand, in the
filter approach, features are selected by filtering methods,
such as the U-test, the t-test, signal-to-noise statistic (S2N)
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(7) and the projective adaptive resonance theory (PART)
(8), prior to the application of mining algorithms.

In our previous study, we investigated the combinations
of various filter and wrapper approaches and applied these
combination methods to microarray data of acute leukemia
and central nervous system tumors (CNS). Consequently,
we showed that a combination method of the use of projec-
tive adaptive resonance theory and that of a boosted fuzzy
classifier with the SWEEP operator method denoted PART-
BFCS was the best among various combination methods for
constructing on accurate model resulting in an accurate pre-
diction. In this study, we applied this method to the analysis
of expression profile data of esophageal cancer. In addition,
the performances of BFCS or PART-BFCS with the U-test
models, were investigated. The constructed PART-BFCS
with the U-test or PART-BFCS models could accurately dis-
criminate esophageal cancer patients with intramural me-
tastases (IMs) from other esophageal cancer patients, BFCS
with the U-test (U-test-BFCS) models could not.

It is necessary to select specific and essential marker
genes for cancer classification and diagnosis. Minimum gene
sets without false positive ones should be extracted. There-
fore, various methods were compared under the condition of
small inputs. We concluded that our method is the best under
this condition for esophageal cancer analysis.

MATERIALS AND METHODS

Microarray analysis Gene expression profile data were ob-
tained from 64 surgical specimens from esophageal cancer patients:
16 patients who had no lymph node metastases (O1), 6 patients
who had lymph node metastases from one to four (O2), 29 patients
who had over four lymph node metastases (O3), and 13 patients
who had some IMs (see Table 1A). For RNA extraction, trained
pathologists carefully excised bulk tissue samples from the main
tumor, leaving a clear margin from the surrounding nontumorous
tissue. Total RNAs extracted from the bulk tissue samples were
biotin-labeled and hybridized to high-density oligonucleotide mi-
croarrays (Affymetrix Human Genome U95A Array) containing
12,600 probe sets representing 10,000 transcripts according to the
manufacturer’s instructions. The scanned data of the arrays were

processed by Affymetrix Microarray Suite, which scaled the aver-
age intensity of all the genes on each array to a target signal of
1000.

Data processing As shown in Table 1B, the esophageal can-
cer data were partitioned into two data sets: 54 samples (42 non-
IM and 12 IM) as a modeling data set for constructing the class
prediction model (predictor) and 10 samples (9 non-IM and 1 IM)
as a blind data set for evaluating the constructed predictor (10 blind
data), and a leave-one-out cross-validation set (LOOCV data). We
excluded genes expressed at a P call (meaning expression signal is
present) of less than 10 in the 64 specimens. As a result, 8037 probes
were selected in this preprocessing step. During the gene- filtering
step, 1000 probes were selected using PART and the U-test, re-
spectively, and then two types of BFCS, namely, BFCS-1 and
BFCS-1,2 were used in the modeling step as wrapper approaches.
For comparison, conventional modeling methods without filtering,
namely, weighted voting (WV) (7) and k-nearest neighbor (kNN),
were also used.

kNN method The k-nearest neighbor (kNN) method is based
on a distance function for pairs of tumor samples, such as Euclidean
distance. kNN proceeded as follows to classify blind data set ob-
servations on the basis of the modeling data set. For each patient in
the blind data set (i) the k closest neighbors in the modeling data
set were found, and (ii) class was predicted by majority vote; that
is, the class that is most common among those k neighbors was
chosen. The number of neighbors (k=3) was used because a simi-
lar cross-validation accuracy of models was obtained in the model-
ing data set for various ks.

WV method WV was originally proposed by Golub et al.
(7) to manage microarray data. The weight of each gene was calcu-
lated using signal-to-noise statistic. The linear models of one gene
were assembled by gene weight.

Model construction with parameter selection The param-
eter increasing method (PIM) (9) was used to select input combi-
nations for the construction of kNN and WV models. This was per-
formed as follows.

First, we predicted the class (IM or non-IM) of each sample us-
ing the prediction model with a single input. Prediction models for
each probe were constructed in series, and all the probes were or-
dered on the basis of the accuracy of the constructed models. In the
next step, the probe with the highest accuracy was used to con-
struct a combination model.

Second, we selected a partner probe for the probe selected in the
first step to increase prediction accuracy. To accomplish this, we

TABLE 1. List of esophageal cancer patients

A. All patients

Stage of metastasis Description
Number of

patients

O1 Lymph node metastases= 0 16
O2 4≥Lymph node metastases≥ 1 6
O3 Lymph node metastases > 4 29
IM Intramural metastases (IM) 13

Total 64

B. Divided data set

Data set name Stage of metastasis

Content of data blocks
Number of
data blocksNumber in

the modeling data
Number in

the blind data

Blind 10 data Non-IM (O1, O2, O3) 42 9 1
IM 12 1

Leave-one-out
Cross-validation
(LOOCV) data

Non-IM 51 0 13
IM 12 1
Non-IM 50 1 51
IM 13 0
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constructed a 2-input model in which a ranked probe was desig-
nated input 1, and input 2 (partner probe) was selected to provide
the highest training accuracy while applying kNN (or WV) and
PIM to the analysis of the modeling data. By repeating this step, an
optimum combination of N

attribute
 candidate probes was identified

for use as input probes in the model construction. N
attribute

 was de-
fined as ten in this study.

Finally, combinations of N
attribute

 probes, i.e., from the first to the
N

attribute

th probes were evaluated. We constructed N
attribute

 predictor
models, beginning with one input using only the first-selected
probe to N

attribute
 inputs using all the N

attribute
 probes. The perfor-

mance of the prediction models was evaluated by applying them to
the analysis of the blind data set.

For the two data sets, the genes with the 1st to the 10th highest
accuracies were used as the first inputs for the construction of the
10 combination models by PIM.

BFCS method Boosting was proposed by Schapire (10), and
thus far, several derivative boosting algorithms (11–13) have been
developed. Boosting is useful for class prediction using high-di-
mensional inputs and very fast algorithms.

In our previous study, we developed a boosted fuzzy classifier
with the SWEEP operator method (BFCS) (5) on the basis of
AdaBoost (11), which is the most basic boosting algorithm. This
method enables the evaluation of the reliability of the predictions
for each patient. However, it is difficult to evaluate the reliability
of the predicted results of conventional boosting.

A BFCS model is composed of type I fuzzy neural network
(FNN) models (14). In this study, 1- or 2-input FNN models were
used as weak learners in the BFCS model, and they were com-
bined with connection weights, which were determined using the
AdaBoost algorithm. BFCS has two types, BFCS-1 and BFCS-1,2.
A BFCS-1 model is composed of 1-input FNN models (5). On the
other hand, BFCS-1,2 is composed of 1- or 2-input FNN models
(5). BFCS-1,2 can used for analyzing the interaction between two
inputs, because this method can includes 2-input FNN models.

PART-BFCS Previously, we developed and combined the
use of the projective adaptive resonance theory (PART) as a gene
filtering method and that of a boosted fuzzy classifier with the
SWEEP operator method (BFCS) as a modeling method. In the re-
sulting method PART-BFCS, PART first preselects the genes that
show small variances within a class. Then, BFCS rapidly selects
these genes to build a highly accurate and reliable predictor.

PART has two important parameters, vigilance and distance.
Vigilance was optimized so that modeling samples clustered well.
Distance was used to control the number of extracted genes. The
genes extracted by PART showed a low standard deviation (SD) in
the low-gene–expression-level class. The predictor using genes with
a low SD in low class showed a high performance (8).

In BFCS, 1- or 2-input FNN models based on the neural network
and fuzzy logic were used as weak learners. The BFCS models
constructed using only 1-input FNN models were defined as a
BFCS-1 model, and those constructed using 1- or 2-input FNN
models were defined as a BFCS-1,2 model in our previous study.

RESULTS AND DISCUSSION

Selection of BFCS type and complexity of esophageal
cancer data for the classification of IM and non-IM
BFCS-1 is effective for analyzing many gene expression
profiles, such as those of acute leukemia, central nervous
system tumors (CNS), and soft tissue sarcomas (unpub-
lished data). BFCS-1 without screening was applied to the
analysis of the modeling data of esophageal cancer shown
in Fig. 1. Figure 1 shows training curves against the number

of genes. The solid line indicates the training curve for the
esophageal cancer data. The dashed lines indicate the mod-
eling results for other cancer data, namely, the acute leuke-
mia, and CNS data. The training curve result obtained by
the BFCS-1 expressed underfitting of the esophageal cancer
data, and a training curve result of 100% was achieved for
the data of the other two cancers. This result implies that
the esophageal cancer data were very complex. Therefore,
BFCS-1,2 was used in this study, because it is more effec-
tive than BFCS-1 in the cases in which the relationships of
the attributes provided and its output are highly complex.

Comparison of performances of BFCS with filtering
methods with those of other methods The perfor-
mances of BFCSs with filtering methods as models were in-
vestigated, namely, BFCS with PART (PART-BFCS), BFCS
with the U-test (U-test-BFCS), and BFCS with PART and
the U-test (PART-BFCS with U-test). For comparison, the
predictors of two conventional methods, namely, WV and
kNN, were constructed. The performances of the predictors
were compared in terms of accuracy using a blind data set
that was not used for modeling. By using 10 combination
models, the average accuracy for the blind data set was cal-
culated for the two data sets, namely, 10 blind and LOOCV
data.

Results of LOOCV data are shown in Table 2. The results
show that the average accuracy of 6-input PART-BFCS with
the U-test models is the highest. The average accuracies of
the BFCSs with filtering methods were higher than those of
two conventional methods, namely, WV and kNN. How-
ever, U-test-BFCS models showed a very low sensitivity.

Results of 10 blind data are shown in Table 3. The results
show that the average accuracy of 10-input PART-BFCS
with the U-test methods is the highest and that the average
accuracies of models for BFCS with filtering methods were
higher than those of the conventional methods. However,
U-test-BFCS model also shows a very low sensitivity.

A comparison of PART-BFCS and PART-BFCS with the

FIG. 1. Training curves of BFCS-1 without screening for model-
ing data of 10 blind data. The training curves were developed using
average training accuracy from 10 combination models constructed by
BFCS-1. The solid line with filled circles is the training curve for the
esophageal cancer data. The dashed line with open circles is the curve
for the acute leukemia data. The dashed line with open squares is the
curve for the central nervous system (CNS) tumor data. The leukemia
and CNS data were obtained from the website http://www.broad.mit.edu/
cgi-bin/cancer/datasets.cgi.
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U-test was performed using the accuracies of 100 models
(2 data sets×10 combination models×5 types of input from
2 to 10). The P value was 0.022 and was calculated using
the paired t-test. PART-BFCS with the U-test was superior
to PART-BFCS for esophageal cancer data. These results
indicate that PART is necessary for BFCS, because PART
eliminates genes which hinder the prediction of BFCS. In
addition, PART-BFCS with the U-test was the best method
for analyzing esophageal cancer data.

Comparison of selected genes by PART-BFCS and
PART-BFCS with U-test The average accuracy of 6-in-
put PART-BFCS with the U-test models was the highest, as
shown in Table 2. The detailed results of ten combination
6-input PART-BFCS with the U-test models were analyzed
(data not shown). Results of the PART-BFCS were also ana-
lyzed, because this method had the second highest accuracy
of the 6-input models. The results showed that the accura-
cies of all the models used are almost the same. However,

sensitivity markedly differed between the models; the sensi-
tivities ranged from 0.0% to 46.2% for PART-BFCS with
the U-test models, and from 7.7% to 38.5% for PART-BFCS
models. The variance in sensitivity was large, because the
number of IM patients was very small in this study. There-
fore, the highest sensitivity models among ten combinations
for each method were selected for the following analysis;
the no. 4 model for PART-BFCS with the U-test and the
no. 5 model for PART-BFCS.

Actually, 99 and 121 independent genes (probe sets) were
selected and the top 10 genes that were selected most fre-
quently are shown in Table 4A. Table 4A shows that the
gene CDK6 was selected most and the gene SIM2 was se-
lected 2nd most for both models. CDK6 is a well-known
cell cycle regulation gene and is an important marker for
cancer diagnosis (15–17). For 10 blind data, CDK6 was also
selected frequently, as shown in Table 5.

Next, we investigated the genes selected together with

TABLE 2. Comparison of performances of various methods for LOOCV data

Method (−)
Inputs (−)

1 2 3 4 5 6 7 8 9 10

Accuracy (%) BFCS with PART and U-test – 75.0 – 75.8 – 80.9a – 78.8 – 80.3
BFCS with PART – 76.4 – 75.8 – 77.2 – 77.3 – 78.1
BFCS with U-test – 65.5 – 68.6 – 73.0 – 73.0 – 76.1
kNN 74.7 70.0 70.8 70.2 71.3 69.5 70.3 68.1 69.4 69.1
WV 61.3 64.1 66.1 69.8 63.0 62.2 63.6 65.9 65.9 64.7

Sensitivity (%) BFCS with PART and U-test – 15.4 – 21.5 – 21.5 – 13.1 – 11.5
BFCS with PART – 16.2 – 25.4 – 16.9 – 13.1 – 6.2
BFCS with U-test – 2.3 – 3.8 – 0.0 – 0.0 – 0.0
kNN 23.8 24.6 25.4 20.8 21.5 18.5 16.2 14.6 19.2 16.9
WV 14.6 12.3 13.8 16.9 15.4 19.2 17.7 16.2 15.4 16.2

Specificity (%) BFCS with PART and U-test – 90.2 – 89.6 – 96.1 – 95.5 – 97.8
BFCS with PART – 91.8 – 88.6 – 92.5 – 93.7 – 96.5
BFCS with U-test – 81.6 – 85.1 – 91.6 – 91.6 – 95.5
kNN 87.6 81.6 82.4 82.7 83.9 82.5 84.1 81.8 82.2 82.4
WV 73.1 77.3 79.4 83.3 75.1 73.1 75.3 78.6 78.8 77.1

a The highest accuracy. – indicates that no models were constructed, because BFCS-1,2 method selected a 2-input weak learner consisting of two
genes. Accuracy is the ratio of correctly predicted patients to total patients. Sensitivity is accuracy for IM patients. Specificity is accuracy for non-
IM patients.

TABLE 3. Comparison of performances of various methods for 10 blind data

Method (−)
Inputs (−)

1 2 3 4 5 6 7 8 9 10

Accuracy (%) BFCS with PART and U-test – 80.0 – 84.0 – 85.0 – 89.0 – 96.0a

BFCS with PART – 83.0 – 81.0 – 82.0 – 83.0 – 88.0
BFCS with U-test – 82.0 – 79.0 – 84.0 – 83.0 – 88.0
kNN 72.0 74.0 72.0 80.0 77.0 75.0 78.0 76.0 73.0 69.0
WV 66.0 67.0 57.0 60.0 65.0 62.0 70.0 65.0 61.0 64.0

Sensitivity (%) BFCS with PART and U-test – 50.0 – 60.0 – 80.0 – 80.0 – 80.0
BFCS with PART – 70.0 – 80.0 – 90.0 – 90.0 – 90.0
BFCS with U-test – 30.0 – 10.0 – 10.0 – 0.0 – 0.0
kNN 20.0 0.0 10.0 10.0 10.0 10.0 20.0 20.0 20.0 0.0
WV 30.0 40.0 20.0 10.0 50.0 30.0 30.0 0.0 20.0 40.0

Specificity (%) BFCS with PART and U-test – 83.3 – 86.7 – 85.6 – 90.0 – 97.8
BFCS with PART – 84.4 – 81.1 – 81.1 – 82.2 – 87.8
BFCS with U-test – 87.8 – 86.7 – 92.2 – 92.2 – 97.8
kNN 77.8 82.2 78.9 87.8 84.4 82.2 84.4 82.2 78.9 76.7
WV 70.0 70.0 61.1 65.6 66.7 65.6 74.4 72.2 65.6 66.7

a The highest accuracy. – indicates that no models were constructed, because BFCS-1,2 method selected a 2-input weak learner consisting of two
genes. Accuracy is the ratio of correctly predicted patients to total patients. Sensitivity is accuracy for IM patients. Specificity is accuracy for non-
IM patients.
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CDK6, as shown in Tables 4B and 5. For 10 blind data,
Table 5 showed that FZD5 and GPA33 were frequently se-
lected together with CDK6 gene. For LOOCV data, Table 4B
showed that C19orf2 and FZD5 were also selected frequent-
ly.

Comparison of accuracy of 2-input models including
those for CDK6 with those of other models The per-
formances of 1- or 2-input BFCS models were calculated
and are shown in Table 6, such as those for CDK6+C19orf2,
CDK6+FZD5, CDK6+GPA33, CDK6, C19orf2, FZD5,
GPA33, CDK6+SIM2, and the negative control. The nega-
tive control indicates the average performance of 2-input
models selected randomly 20,000 times. Table 6 shows that
the accuracies and sensitivities of 2-input models, such as

those for CDK6+C19orf2, CDK6+FZD5, and CDK6+
GPA33, are very high. On the other hand, the sensitivities of
1-input models, such as those for CDK6, C19orf2, FZD5,
and GPA33, were zero percent. The irrelevant 2-input mod-
els, namely, those for CDK6+SIM2 and the negative con-
trol, showed low sensitivities. These results show that all
the patients are classified as non-IM patients by all the 1-in-
put models used, because the 1-input models could not be
constructed correctly owing to the high complexity of these
data. These results show that 2-input combinations of CDK6,
such as CDK6+C19orf2, CDK6+FZD5, and CDK6+GPA33
are very important.

IF-THEN rules extracted from BFCS model After
modeling, the IF-THEN rules for esophageal cancer with

TABLE 4. List of genes selected by 6-input BFCS with screening for LOOCV data

A. The selected genes

Model Gene name Genbank Description
Number of

times selected

No. 4 model of BFCS with PART
and U-test

CDK6 X66365 Cyclin-dependent kinase 6 45

SIM2 U80456 Single-minded homolog 2 (Drosophila) 27
MYL6 M22919 Myosin, light polypeptide 6, alkali, smooth muscle 

and non-muscle
19

TRIP6 AJ001902 Thyroid hormone receptor interactor 6 19
C19orf2 AB006572 Chromosome 19 open reading frame 2 17
FBXO21 AB020682 F-box only protein 21 13
KCNJ15 Y10745 Potassium inwardly-rectifying channel, subfamily J, 

member 15
12

ZNF3 X07290 Zinc finger protein 3 (A8-51) 11
POLS AB005754 Polymerase (DNA directed) sigma 11
NFIB AI222594 Nuclear factor I/B 10

No. 5 model of BFCS with PART CDK6 X66365 Cyclin-dependent kinase 6 37
SIM2 U80456 Single-minded homolog 2 (Drosophila) 28
C19orf2 AB006572 Chromosome 19 open reading frame 2 18
TRIP6 AJ001902 Thyroid hormone receptor interactor 6 16
POLS AB005754 Polymerase (DNA directed) sigma 13
ERCC1 M13194 Excision repair cross-complementing rodent

repair deficiency, complementation group 1
(includes overlapping antisense sequence)

13

FZD5 U43318 Frizzled homolog 5 (Drosophila) 12
ZNF3 X07290 Zinc finger protein 3 (A8-51) 12
NFIB AI222594 Nuclear factor I/B 10
TIAL1 D64015 TIA1 cytotoxic granule-associated RNA binding 

protein-like 1
9

B. Genes selected together with CDK6

Model Gene name Genbank Description
Number of

times selected

No. 4 model of BFCS with PART
and U-test

C19orf2 AB006572 Chromosome 19 open reading frame 2 17

MYL6 M22919 Myosin, light polypeptide 6, alkali, smooth muscle 
and non-muscle

9

FZD5 U43318 Frizzled homolog 5 (Drosophila) 4
FBXO21 AB020682 F-box only protein 21 3
GPA33 U79725 Glycoprotein A33 (transmembrane) 3
TRIP13 U96131 Thyroid hormone receptor interactor 13 2
TCF4 M74719 Transcription factor 4 2

No. 5 model of BFCS with PART C19orf2 AB006572 Chromosome 19 open reading frame 2 18
FZD5 U43318 Frizzled homolog 5 (Drosophila) 12
TRIP13 U96131 Thyroid hormone receptor interactor 13 2

(A) The list of these genes was sorted by the number of times selected in the LOOCV (64-fold), and the top 10 genes are shown. Independent 99
and 121 genes (probe sets) were selected for each model, respectively. Except for the names of genes described, those of other 89 genes (probe
sets) involved in no. 4 model and 111 genes (probe sets) involved in no. 5 model were omitted. (B) BFCS-1,2 consisted of 2-input FNN models
concluding two genes. Only the genes selected two or more times are shown. Except for the names of genes described, those of other 5 genes
(probe sets) involved in each no. 4 and no. 5 model were omitted.
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IM and non-IM were obtained from the models including
CDK6. The IF-THEN rules were obtained as a matrices that
are classified by the expression level of selected genes for
three 2-input models (Fig. 2). Using these matrices, simple
and excellent rules were obtained as follows. The first rule
is that patients with low expression levels of CDK6 and
C19orf2 are likely to be IM patients, as shown in Fig. 2A.
Seven patients showed low expression levels of CDK6 and
C19orf2 and all of them were IM patients, corresponding to
54% (7/13) of all the IM patients. The next rule is that pa-
tients with low expression levels of CDK6 and FZD5 are
likely to be IM patients, as shown in Fig. 2B. Sixteen pa-
tients showed low expression levels of CDK6 and FZD5
and 10 of them were IM patients, corresponding to 77%
(10/13) of all the IM patients. The third rule is that patients

with low expression levels of CDK6 and GPA33 are likely
to be IM patients, as shown in Fig. 2C. Seventeen patients
showed low expression levels of CDK6 and GPA33 and 10
of them were IM patients, corresponding to 77% (10/13) of
all the IM patients. Non-IM or IM patients clustered at spe-

TABLE 5. List of genes selected by BFCS with screening methods for 10 blind data

Method
Inputs

(−)
Order of

selection

Combination no.

1 2 3 4 5 6 7 8 9 10

BFCS with PART 

and U-test

2 1 POLS HMGN1 SPTAN1 FBXO21 SHARP PC4 RSU1 RSU1 SIM2 HMGN1

BIG1 PC4 MEST SIM2 SIM2 SIM2 G2AN SIM2 ATP6AP2 PCSK1

4 2 DNASE1L1 DNASE1L1 FBXO21 DNASE1L1 DNASE1L1 DNASE1L1 STARD3 DNASE1L1 DNASE1L1 RSU1

Unknown Unknown TRIP6 Unknown Unknown Unknown RAGE Unknown Unknown G2AN

6 3 HMGN1 SEC24A HMGN1 HMGN1 HMGN1 SEC24A HMGN1 HMGN1 HMGN1 DNASE1L1

PC4 BIG1 PC4 PC4 PC4 BIG1 PC4 PC4 PC4 SLC10A3

8 4 FBXO21 CDK6
a

CDK6
a

CDK6
a

CDK6
a

ERCC1 DNASE1L1 CDK6
a

CDK6
a

SEC24A

TRIP6 C19orf2 LRP5 GPA33b GPA33b OXCT Unknown GPA33b GPA33b BIG1

10 5 SHARP FBXO21 OAS1 SEC24A SEC24A CDK6
a

SEC24A SEC24A SEC24A Unknown

SIM2 SIM2 NFIB BIG1 BIG1 GPA33 BIG1 BIG1 BIG1 BTAF1

BFCS with PART 2 1 POLS HMGN1 SPTAN1 C21orf25 FBXO21 DKFZp547K ARCN1 ZNF294 SHARP NMU

BIG1 PC4 MEST SIM2 SIM2 SIM2 SIM2 SIM2 SIM2 SIM2

4 2 SAA1 CDK6
a

FBXO21 DNASE1L1 DNASE1L1 DNASE1L1 DNASE1L1 DNASE1L1 DNASE1L1 DNASE1L1

SIM2 MADH4 TRIP6 Unknown Unknown Unknown Unknown Unknown Unknown Unknown

6 3 CDK6
a

CCBP2 HMGN1 HMGN1 HMGN1 HMGN1 HMGN1 HMGN1 HMGN1 HMGN1

FLJ31564 POLS PC4 PC4 PC4 PC4 PC4 PC4 PC4 PC4

8 4 HMGN1 Unknown CDK6a CDK6a CDK6a CDK6a CDK6a CDK6a CDK6a CDK6a

PC4 PRSS3 FLJ31564 FZD5
b

FZD5
b

FZD5
b

FZD5
b

FZD5
b

FZD5
b

FZD5
b

10 5 FBXO21 TERF1 OAS1 SAA1 SAA1 SAA1 SAA1 SAA1 SAA1 SAA1

MINA53 MMP9 NFIB BIG1 BIG1 BIG1 BIG1 BIG1 BIG1 BIG1

a CDK6.
b Genes were selected together with CDK6.

TABLE 6. Comparison of prediction accuracies of
genes frequently selected by BFCS

Used genes (−)
Number of

input
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)

CDK6+C19orf2a 2 89.1 53.8 98.0
CDK6+FZD5a,b 2 84.4 76.9 86.3
CDK6+GPA33b 2 82.8 76.9 84.3
CDK6 1 79.7 0.0 100.0
C19orf2 1 79.7 0.0 100.0
FZD5 1 79.7 0.0 100.0
GPA33 1 79.7 0.0 100.0
CDK6+SIM2c 2 79.7 30.8 92.2
Nagative controld 2 78.8±1.4 0.6±2.9 98.7±1.8

Accuracies were calculated by BFCS for LOOCV data.
a Gene that was frequently selected with CDK6 for LOOCV data.
b Gene that was frequently selected with CDK6 for 10 blind data.
c Gene that was the frequently selected 2nd for LOOCV data.
d Two genes were randomly extracted from the genes never selected

by PART-BFCS or PART-BFCS with the U-test methods, and the model
was constructed by BFCS. This procedure was repeated for 20,000
times.

FIG. 2. IF-THEN rules including those for CDK6. Because each
gene can be divided into either a high or a low group using fuzzy logic,
this model comprised 4 (=22) fuzzy rules. Values on the left in each
matrix indicate the number of IM patients. Values on the right indicate
the number of non-IM patients. (A) For CDK6 and C19orf2. (B) For
CDK6 and FZD5. (C) CDK6 and GPA33.
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cific parts of the matrices.
In this study, we applied PART-BFCS, and PART-BFCS

with the U-test to discriminate esophageal cancer patients
with IM from those with non-IM. It was necessary that a
specific type of BFCS, BFCS-1,2, was used, because the
esophageal cancer data used were highly complex. PART-
BFCS and PART-BFCS with the U-test models showed
higher performances than WV and kNN. PART-BFCS with
the U-test was superior to PART-BFCS. The genes including
CDK6 were found using our methods. Accurate IF-THEN
rules were extracted. The genes selected in this study have a
high potential as new diagnosis markers for esophageal can-
cer. These results indicate that these methods are new meth-
ods of marker gene selection for the diagnosis of cancer pa-
tients.
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